Neurula rotation determines left-right asymmetry in ascidian tadpole larvae.
نویسندگان
چکیده
Tadpole larvae of the ascidian Halocynthia roretzi show morphological left-right asymmetry. The tail invariably bends towards the left side within the vitelline membrane. The structure of the larval brain is remarkably asymmetric. nodal, a conserved gene that shows left-sided expression, is also expressed on the left side in H. roretzi but in the epidermis unlike in vertebrates. We show that nodal signaling at the late neurula stage is required for stereotypic morphological left-right asymmetry at later stages. We uncover a novel mechanism to break embryonic symmetry, in which rotation of whole embryos provides the initial cue for left-sided expression of nodal. Two hours prior to the onset of nodal expression, the neurula embryo rotates along the anterior-posterior axis in a counterclockwise direction when seen in posterior view, and then this rotation stops when the left side of the embryo is oriented downwards. It is likely that epidermis monocilia, which appear at the neurula rotation stage, generate the driving force for the rotation. When the embryo lies on the left side, protrusion of the neural fold physically prevents it from rotating further. Experiments in which neurula rotation is perturbed by various means, including centrifugation and sandwiching between glass, indicate that contact of the left epidermis with the vitelline membrane as a consequence of neurula rotation promotes nodal expression in the left epidermis. We suggest that chemical, and not mechanical, signals from the vitelline membrane promote nodal expression. Neurula rotation is also conserved in other ascidian species.
منابع مشابه
Tracing cell fate in brain formation during embryogenesis of the ascidian Halocynthia roretzi.
Ascidian eggs develop into tadpole larvae. They have a simple central nervous system (CNS) at the dorsal midline. The CNS is formed through neural tube formation at the neurula stage, as in vertebrates. The total number of cells in the CNS is approximately 300. In Halocynthia roretzi, the anterior part of the CNS, which consists of the brain (sensory vesicle) and the visceral ganglion, is exclu...
متن کاملMechanisms of helical swimming: asymmetries in the morphology, movement and mechanics of larvae of the ascidian Distaplia occidentalis.
A great diversity of unicellular and invertebrate organisms swim along a helical path, but it is not well understood how asymmetries in the body shape or the movement of propulsive structures affect a swimmer's ability to perform the body rotation necessary to move helically. The present study found no significant asymmetries in the body shape of ascidian larvae (Distaplia occidentalis) that co...
متن کاملThe CNS connectome of a tadpole larva of Ciona intestinalis (L.) highlights sidedness in the brain of a chordate sibling
Left-right asymmetries in brains are usually minor or cryptic. We report brain asymmetries in the tiny, dorsal tubular nervous system of the ascidian tadpole larva, Ciona intestinalis. Chordate in body plan and development, the larva provides an outstanding example of brain asymmetry. Although early neural development is well studied, detailed cellular organization of the swimming larva's CNS r...
متن کاملPressure tolerance of tadpole larvae of the Atlantic ascidian Polyandrocarpa zorritensis: potential for deep-sea invasion
How deep-sea fauna evolved is a question still being investigated. One of the most accepted theories is that shallow water organisms migrated to deeper waters and gave origin to the deep-sea communities. However, many organisms are prevented from performing long vertical migrations by the increasing hydrostatic pressure. Tadpole larvae of the ascidian Polyandrocarpa zorritensis were submitted t...
متن کاملThe Ascidian Numb Gene Involves in the Formation of Neural Tissues
Notch signaling plays fundamental roles in various animal development. It has been suggested that Hr-Notch, a Notch homologue in the ascidian Halocynthia roretzi, is involved in the formation of peripheral neurons by suppressing the neural fates and promoting the epidermal differentiation. However, roles of Notch signaling remain controversial in the formation of nervous system in ascidian embr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 139 8 شماره
صفحات -
تاریخ انتشار 2012